
ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 613

Orthogonal Array Approach for Test Case

Optimization

Shubhra Banerji

Project Manager, Software Testing Research & Development Unit, IBM India Pvt. Ltd., Bangalore, India

ABSTRACT: In Software Testing, we try to cover all test scenarios and test cases to test an application/product to achieve 100%

test coverage. However, most of the times we do not have the leisure of time to test all the test cases [1]. In such cases, we have to

balance between the specified time and quality so that we achieve maximum test coverage. This becomes a very big challenge for

the Software Test Managers.

According to Gupta [6], managers adopt multiple strategies to optimize the testing effort and achieve the right balance between

Cost, Schedule and Quality. Striking a right balance decides the success or failure of any software solution.

In this paper, we have proposed a technique called Orthogonal Array Approach for reducing the number of test cases that needs to

be tested for any given software and hence improve the efficiency of testing. With this technique, reduced numbers of test cases are

generated automatically. Fewer test cases would reduce time consumption of the testing as a whole and hence the cost of testing will

also reduce. The details of the technique are described along with two case studies for illustration. The advantages of the method

are clearly brought out with the help of analysis graphs.

Keywords: Software Testing, Test Case Generation, Test Case Reduction, Orthogonal Array Approach.

I. INTRODUCTION

Software testing has now become a very complex and

challenging task. To achieve this challenging task, we

need to build a proper strategy. The strategy provides a

road map that describes the steps to be undertaken as part

of testing. It also lays down the effort, time, and resources

required to achieve the same.

Thus, testing strategy consists of test planning, test case

design, test case execution and test result data collection

and evaluation [5].

Software testing activity is not just the identification and

specification of defects. It covers reporting and also offers

suggestions and recommendations for appropriate actions

to be taken for improving the software product/solution.

[2]

For any given software application, we have a huge

number of test cases. We require to identify only those

test cases that would lead us to expose maximum number

of undetected errors. Despite the importance of techniques

in identifying these test cases, developing the techniques

remains one the most difficult aspects of software testing.

[3]

The paper has been divided into several sections.

Section 2, provides an insight into the need for Test

Optimization. Section 3 describes the “Orthogonal Array

Approach” for generating optimal number of test cases. In

section 4, two case studies have been described. Section 5

states the results and gives the analysis graphs

demonstrating the benefits of using this approach. The

concluding remarks and scope for further work has been

given in section 6.

II. WHY OPTIMIZATION?

Testing process, being the last stage before the release of

the product to the customer, holds the key to success of

the product in the market.

With the day to day increasing competition in the market,

there is a need to reduce the testing lifecycle so that the

desired testing can be performed with high quality and

less cost. Considering the fact that time is always at a

premium, the need for having an optimized testing

process is therefore very essential. [7]

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 614

This requires the Testing Team and Test Manager to

optimize the Testing Process [4]. We have explored the

usage of the Orthogonal Array Approach described in the

next section to reduce the number of test cases

significantly.

III. ORTHOGONAL ARRAY APPROACH

The following terminologies have been used in this

approach

1) Factor (f): Those parameters that the tester

intentionally changes during testing to study its

effect on the output.

2) Levels (p): The different values of factors used in

testing.

During testing, we basically observe the average change

in the response when a factor is changed from one level to

another level. Hence to achieve the entire test coverage,

we should have (f*p) number of test cases.

As mentioned above, all these test cases can be executed

in an ideal situation with infinite time and budget

available. We are using orthogonal array approach to

reduce the number of test cases.

The following steps are followed to construct the

orthogonal array for testing a program with f factors, each

factor having p levels:

1. Check if p is a prime number.

2. In case where each factor has different levels,

Check whether the highest level is a prime

number.

3. If the highest level not a prime, identify the next

highest prime number.

4. Check if f <=p+1.If not, check if f is a prime

number, else identify the next highest prime

number.

5. There exists an OA (Orthogonal Array) with p
2

rows and (p+1) columns.

6. When p=3, we have an OA with 9 rows and 4

columns.

7. We construct “p tuples” (e1, e2, ….ep) as

follows:

e1 = (0,1,2,….,p-1) = (0,1,2)

e2 = (1,2,……,p) = (1,2,3)

ei=(ei-1 + e1) mod p, for i= 3 to p

e3 = (e2 + e1) mod 3 = (1,3,2)

8. Let us now construct the 9 rows and 4 columns.

The 9 rows represent the 9 test cases.

The 1
st
 column is constructed as follows:

Rows 1 2 3 4

1 1

2 1

3 1

4 2

5 2

6 2

7 3

8 3

9 3

9. The 1
st
 p (p=3) rows are constructed as follows:

Rows 1 2 3 4

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2

5 2

6 2

7 3

8 3

9 3

Now we will make use of the tuples constructed in

Step 7.

10. Insert ei’s in ((i-1)*p) +1 th rows, i = 2, 3..., p

In our case, for p =3,

e2 in ((2-1)*3) + 1 th row = 4
th

 row; e2 = (1,2,3)

e3 in ((3-1)*3) + 1 th row = 7
th

 row; e3 = (1,3,2)

Rows 1 2 3 4

1 1 1 1 1

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 615

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2

6 2

7 3 1 3 2

8 3

9 3

11. Fill (i*p) + 2 th row as (e(i+1) + 1) mod p, i =

1,2,……,p

In our case, for p =3,

5
th

 row = (e2 + 1) mod 3; ((2, 3, 4) mod 3) i.e. (2, 3, 1)

8
th

 row = (e3 + 1) mod 3; ((2, 4, 3) mod 3) i.e. (2, 1, 3)

Rows 1 2 3 4

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2

7 3 1 3 2

8 3 2 1 3

9 3

12. Fill (i*p) + 3 rd row as (e (i+1) + 2) mod p, i = 1,

2,….., p

In our case, for p =3,

6
th

 row = (e2 + 2) mod 3; ((3, 4, 5) mod 3) i.e. (3, 1, 2)

9
th

 row = (e3 + 2) mod 3; ((3, 5, 4) mod 3) i.e. (3, 2, 1)

Rows 1 2 3 4

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1

13. When p=5, we have an OA with 25 rows and 6

columns.

Let us construct the OA with p=5.

14. We construct 5 tuples as follows:

e1 = (0,1,2,….,p-1) = (0,1,2,3,4)

e2 = (1,2,……,p) = (1,2,3,4,5)

ei=(ei-1 + e1) mod p, for i= 3 to p

e3 = (e2 + e1) mod 5 = (1,3,5,7,9) mod5 = (1,3,5,2,4)

e4 = (e3 + e1) mod 5 = (1,4,7,5,8) mod 5 = (1,4,2,5,3)

e5 = (e4 + e1) mod 5 = (1,5,4,8,7) mod 5 = (1,5,4,3,2)

15. The 1
st
 column is constructed as follows:

Rows 1 2 3 4 5 6

1 1

2 1

3 1

4 1

5 1

6 2

7 2

8 2

9 2

10 2

11 3

12 3

13 3

14 3

15 3

16 4

17 4

18 4

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 616

19 4

20 4

21 5

22 5

23 5

24 5

25 5

16. THE 1
ST

 P (P=5) ROWS ARE CONSTRUCTED AS

FOLLOWS:

Rows 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 2 2 2 2 2

3 1 3 3 3 3 3

4 1 4 4 4 4 4

5 1 5 5 5 5 5

6 2

7 2

8 2

9 2

10 2

11 3

12 3

13 3

14 3

15 3

16 4

17 4

18 4

19 4

20 4

21 5

22 5

23 5

24 5

25 5

17. Insert ei’s in ((i-1)*p) +1 th rows, i = 2, 3,….., p

In our case, for p =5,

e2 in ((2-1)*5) + 1 th row = 6
th

 row; e2 = (1,2,3,4,5)

e3 in ((3-1)*5) + 1 th row = 11
th

 row; e3 = (1,3,5,2,4)

e4 in ((4-1)*5) + 1 th row = 16th row; e4 = (1,4,2,5,3)

e5 in ((5-1)*5) + 1 th row = 21st row; e5 = (1,5,4,3,2)

Rows 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 2 2 2 2 2

3 1 3 3 3 3 3

4 1 4 4 4 4 4

5 1 5 5 5 5 5

6 2 1 2 3 4 5

7 2

8 2

9 2

10 2

11 3 1 3 5 2 4

12 3

13 3

14 3

15 3

16 4 1 4 2 5 3

17 4

18 4

19 4

20 4

21 5 1 5 4 3 2

22 5

23 5

24 5

25 5

18. Fill (i*p) + 2 th row as (e(i+1) + 1) mod p, i =

1,2,……,p

In our case, for p =5,

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 617

7
th

 row = (e2 + 1) mod 5; ((2, 3, 4, 5, 6) mod 5) i.e. (2, 3,

4, 5, 1)

12
th

 row = (e3 + 1) mod 5; ((2, 4, 6, 3, 5) mod 5) i.e. (2, 4,

1, 3, 5)

17
th

 row = (e4 + 1) mod 5; ((2, 5, 3, 6,4) mod 5) i.e. (

2,5,3,1,4)

22
nd

 row = (e5 + 1) mod 5; ((2, 6, 5, 4, 3) mod 5) i.e. (2, 1,

5, 4, 3)

Rows 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 2 2 2 2 2

3 1 3 3 3 3 3

4 1 4 4 4 4 4

5 1 5 5 5 5 5

6 2 1 2 3 4 5

7 2 2 3 4 5 1

8 2

9 2

10 2

11 3 1 3 5 2 4

12 3 2 4 1 3 5

13 3

14 3

15 3

16 4 1 4 2 5 3

17 4 2 5 3 1 4

18 4

19 4

20 4

21 5 1 5 4 3 2

22 5 2 1 5 4 3

23 5

24 5

25 5

19. Fill (i*p) + 3 rd row as (e (i+1) + 2) mod p, i = 1,

2, ….., p

In our case, for p =5,

8
th

 row = (e2 + 2) mod 5; ((3, 4, 5, 6, 7) mod 5) i.e. (3, 4,

5, 1, 2)

13
th

 row = (e3 + 2) mod 5; ((3, 5, 7, 4, 6) mod 5) i.e. (3, 5,

2, 4, 1)

18
th

 row = (e4 + 2) mod 5; ((3, 6, 4, 7, 5) mod 5) i.e. (3, 1,

4, 2, 5)

23rd row = (e5 + 2) mod 5; ((3, 7, 6, 5, 4) mod 5) i.e. (3,

2, 1, 5, 4)

Rows 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 2 2 2 2 2

3 1 3 3 3 3 3

4 1 4 4 4 4 4

5 1 5 5 5 5 5

6 2 1 2 3 4 5

7 2 2 3 4 5 1

8 2 3 4 5 1 2

9 2

10 2

11 3 1 3 5 2 4

12 3 2 4 1 3 5

13 3 3 5 2 4 1

14 3

15 3

16 4 1 4 2 5 3

17 4 2 5 3 1 4

18 4 3 1 4 2 5

19 4

20 4

21 5 1 5 4 3 2

22 5 2 1 5 4 3

23 5 3 2 1 5 4

24 5

25 5

20. Fill (i*p) + 4 th row as (e (i+1) + 3) mod p, i = 1,

2, ….., p

In our case, for p =5,

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 618

9
th

 row = (e2 + 3) mod 5; ((4, 5, 6, 7, 8) mod 5) i.e. (4, 5,

1, 2, 3)

14
th

 row = (e3 + 3) mod 5; ((4, 6, 8, 5, 7) mod 5) i.e. (4, 1,

3, 5, 2)

19
th

 row = (e4 + 3) mod 5; ((4, 7, 5, 8, 6) mod 5) i.e. (4, 2,

5, 3, 1)

24th row = (e5 + 3) mod 5; ((4, 8, 7, 6, 5) mod 5) i.e. (4,

3, 2, 1, 5)

Rows 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 2 2 2 2 2

3 1 3 3 3 3 3

4 1 4 4 4 4 4

5 1 5 5 5 5 5

6 2 1 2 3 4 5

7 2 2 3 4 5 1

8 2 3 4 5 1 2

9 2 4 5 1 2 3

10 2

11 3 1 3 5 2 4

12 3 2 4 1 3 5

13 3 3 5 2 4 1

14 3 4 1 3 5 2

15 3

16 4 1 4 2 5 3

17 4 2 5 3 1 4

18 4 3 1 4 2 5

19 4 4 2 5 3 1

20 4

21 5 1 5 4 3 2

22 5 2 1 5 4 3

23 5 3 2 1 5 4

24 5 4 3 2 1 5

25 5

21. Fill (i*p) + 5 th row as (e (i+1) + 4) mod p, i = 1,

2, ….., p

In our case, for p =5,

10
th

 row = (e2 + 4) mod 5; ((5, 6, 7, 8, 9) mod 5) i.e. (5, 1,

2, 3, 4)

15
th

 row = (e3 + 4) mod 5; ((5, 7, 9, 6, 8) mod 5) i.e. (5, 2,

4, 1, 3)

20
th

 row = (e4 + 4) mod 5; ((5, 8, 6, 9, 7) mod 5) i.e. (5, 3,

1, 4, 2)

25th row = (e5 + 4) mod 5; ((5, 9, 8, 7, 6) mod 5) i.e. (5,

4, 3, 2, 1)

Rows 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 2 2 2 2 2

3 1 3 3 3 3 3

4 1 4 4 4 4 4

5 1 5 5 5 5 5

6 2 1 2 3 4 5

7 2 2 3 4 5 1

8 2 3 4 5 1 2

9 2 4 5 1 2 3

10 2 5 1 2 3 4

11 3 1 3 5 2 4

12 3 2 4 1 3 5

13 3 3 5 2 4 1

14 3 4 1 3 5 2

15 3 5 2 4 1 3

16 4 1 4 2 5 3

17 4 2 5 3 1 4

18 4 3 1 4 2 5

19 4 4 2 5 3 1

20 4 5 3 1 4 2

21 5 1 5 4 3 2

22 5 2 1 5 4 3

23 5 3 2 1 5 4

24 5 4 3 2 1 5

25 5 5 4 3 2 1

IV. CASE STUDIES

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 619

Case Study 1: The above approach was used for a project

where Compatibility Testing had to be performed for

various Browser-OS-Database combinations.

 The factors and various levels for each of the factors are

listed below in Table 1:

Table 1: Factors and Levels listed for the

Compatibility Testing Scenario

Factors Level 1 Level 2 Level 3

A. Web

Browser
IE 5.0

Netscape

4.7
Mozilla 1.3.1

B. Web Server

OS
Sun OS 2.8 HP-UX 11

Windows NT

Server 4.0

C. Type of

Operation

Retrieval of

Data

Saving of

Data
Data Deletion

D. Database Oracle 8i
SQL

Server 7.0

Sybase ASE

12.5

Here the highest level =3, which is a prime number.

Hence the OA with p=3 is constructed as follows in Table 2:

Table 2: Orthogonal Array constructed for the

Compatibility Testing Scenario

Test

Number

Web

Browser

Web Server

OS

Type of

Operation
Database

1 IE 5.0 Sun OS 2.8
Retrieval of

Data
Oracle 8i

2 IE 5.0 HP-UX 11
Saving of

Data

Sybase

ASE 12.5

3 IE 5.0
Windows NT

Server 4.0

Data

Deletion

SQL

Server 7.0

4
Netscape

4.7
Sun OS 2.8

Saving of

Data

SQL

Server 7.0

5
Netscape

4.7
HP-UX 11

Data

Deletion
Oracle 8i

6
Netscape

4.7

Windows NT

Server 4.0

Retrieval of

Data

Sybase

ASE 12.5

7
Mozilla

1.3.1
Sun OS 2.8

Data

Deletion

Sybase

ASE 12.5

8
Mozilla

1.3.1
HP-UX 11

Retrieval of

Data

SQL

Server 7.0

9
Mozilla

1.3.1
Windows NT

Server 4.0
Saving of

Data
Oracle 8i

Benefit shown to the customer:

For 4 Factors, each with 3 levels, the total no. of test cases

= 3
4 =

81.

With the Orthogonal Array Approach, we have been able

to reduce it to 9 Test Cases.

Thus we have been able to reduce the testing effort to

(1/9) i.e. 11.11% of the total effort.

Hence, Effort Saved = 88.89%.

Case Study 2: Customer was delighted with our approach

and suggested us to add 1 more browser and 1 more OS to

this combination.

Hence, the factors and various levels for each of the

factors are now as follows in Table 3:

Table 3: Factors and Levels listed for the Compatibility

Testing Scenario with 1 more browser and 1 more OS

added

Factors Level 1 Level 2 Level 3 Level 4

A. Web

Browser
IE 5.0

Netscape

4.7

Mozilla

1.3.1
Safari

B. Web

Server OS

Sun OS

2.8

HP-UX

11

Windows

NT Server

4.0

Windows

Vista

C. Type of

Operation

Retrieval

of Data

Saving

of Data

Data

Deletion

D.

Database
Oracle 8i

SQL

Server

7.0

Sybase

ASE 12.5

Here the highest level =4, which is not a prime number.

The second highest level =3, which is a prime number.

Hence we can construct the Orthogonal Array with 4*3=

12 rows and 4 (3+1) columns.

The OA is constructed as follows in Table 4:

Table 4: Orthogonal Array constructed for the

Compatibility Testing Scenario with 1 more browser and

1 more OS added

Test

Number

Web

Browser

Web

Server OS

Type of

Operation
Database

1 IE 5.0 Sun OS 2.8
Retrieval of

Data
Oracle 8i

2 IE 5.0 HP-UX 11
Saving of

Data

Sybase

ASE 12.5

3 IE 5.0

Windows

NT Server

4.0

Data

Deletion

SQL

Server 7.0

4
Netscape

4.7

Windows

Vista

Saving of

Data

SQL

Server 7.0

5
Netscape

4.7
Sun OS 2.8

Data

Deletion
Oracle 8i

6
Netscape

4.7
HP-UX 11

Retrieval of

Data

Sybase

ASE 12.5

7
Mozilla

1.3.1

Windows

NT Server

4.0

Data

Deletion

Sybase

ASE 12.5

8
Mozilla

1.3.1

Windows

Vista

Retrieval of

Data

SQL

Server 7.0

9
Mozilla

1.3.1
Sun OS 2.8

Saving of

Data
Oracle 8i

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 620

10 Safari HP-UX 11
Retrieval of

Data

SQL

Server 7.0

11 Safari

Windows

NT Server

4.0

Saving of

Data
Oracle 8i

12 Safari
Windows

Vista

Data

Deletion

Sybase

ASE 12.5

Benefit shown to the customer:
For 4 Factors, 2 factors with 3 levels and the other 2

factors with 4 levels, the total no. of test cases = 3
2
 * 4

2 =

144.

With the Orthogonal Array Approach, we have been able

to reduce it to 12 Test Cases.

Thus we have been able to reduce the testing effort (1/12)

i.e. 8.33% of the total effort.

Hence, Effort Saved = 91.67%.

V. RESULTS

Table 5 illustrates the results from the above 2 Case

Studies.

Case Study 1 shows the reduction of Total Test Cases

from 81 to 9 with the use of this algorithm.

88.89% efforts have been saved leading to a Time Saving

of 144 hrs and Cost Saving of $3456 (Considering the

customer billing rate of $ 24 /hr).

Case Study 1 shows the reduction of Total Test Cases

from 144 to 12 with the use of this algorithm.

91.67% efforts have been saved leading to a Time Saving

of 264 hrs and Cost Saving of $6336 (Considering the

customer billing rate of $ 24 /hr).

Table 5 : Results for the above 2 Case Studies

Parameter Case Study1 Case Study2

All possible Test cases 81 144

Reduced Test Cases 9 12

Effort Saving (%) 88.89 91.67

Time Saving(hrs) 144 264

Cost Saving ($) 3456 6336

Fig1 and Fig2 show the graphs analyzing the above

results.

Fig 1 compares the Total TCs with the Reduced TCs for

Case Study1 and Case Study2.

Fig 2 shows the Effort Saving (%) and Time Saving (Hrs)

for Case Study1 and Case Study2.

0

20

40

60

80

100

120

140

160

Case
Study1

Case
Study2

81

144

9 12

Total TCs

Reduced TCs

0

50

100

150

Case
Study1

Case
Study2

81

144

9 12

Total TCs

Reduced TCs

Fig 2 : Effort Saving and Time Saving for the above 2 Case Studies

Fig 1: Total TCs and Reduced TCs for the above 2 Case Studies

0

50

100

150

200

250

300

Case
Study1

Case
Study2

88.89 91.67

144

264

Effort Saving(%)

Time Saving(Hrs)

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 621

VI. CONCLUSION

There are various different factors that determine the

effectiveness of the testing. To keep the client happy, the

managers have to constantly look for opportunities to

decrease the overall cost of testing. Matured organizations

are now looking at newer and long term solutions for

defining the test effectiveness of their testing functions

[7].
The above proposed technique has achieved huge

reduction in the percentage of the test cases. Based on the

analysis done, the proposed method can be considered a

superior technique.

Limitation of the proposed technique lies in the fact that

by selecting few optimum test cases, we are introducing a

risk factor as only few test cases are executed selectively.

Another limitation of this technique is the assumption that

each of the factors is independent. This may not be the

case always. The future work on the technique would try

to address these problems.

REFERENCES

[1]B. Beizer. “Software Testing Techniques.” Van

Nostrand Reinhold, 2
nd

 edition, 1990.

[2] B. Korel, “Automated Software Test Data

Generation,” Conference on Software Engineering, Vol

10, No. 8, pages 870-879, August 1990.

[3] L. A. Clarke, “A System to Generate Test Data and

Symbolically Execute Programs,” IEEE Transactions on

Software Engineering, Vol. SE-2, No. 3, pages 215-222,

September 1976.

[4] L. J. Morell. “A Theory of Error-Based Testing,” PhD

thesis, University of Maryland, College Park MD, 1984,

Technical Report TR-1395.

[5] R. P. Mahapatra and Jitendra Singh, “Improving the

Effectiveness of Software Testing through Test Case

Reduction”, PROCEEDINGS OF WORLD ACADEMY

OF SCIENCE, ENGINEERING AND TECHNOLOGY

VOLUME 27 FEBRUARY 2008 ISSN 1307-6884.

[6] Shishank Gupta, “Parametric Test Optimization”,

Software Testing Conference, 2002.

[7] Shishank Gupta, “Testing Effectiveness – Zero defects

or higher ROI?” Software Testing Conference, 2006.

BIOGRAPHY

Shubhra Banerji is with IBM India Pvt. Ltd. as Project

Manager in their Software Testing Research &

Development Unit.

She has a Masters Degree in Physics (Integrated M.Sc)

from IIT Kharagpur. She is working for PhD at Jadavpur

University In Software Testing.

She is the recipient of R.G. Chatterjee Memorial Gold

Medal at IIT Kharagpur on being adjudged the best

student in Grade Point Average, Project Work and

Laboratory Practices.

She has 14 years of extensive software experience in

Development and Testing in various Domains.

Earlier she was with Infosys Technologies Limited

Bangalore where she was responsible for managing a

group of 50 Test Engineers and Analysts to provide

defect-free tested software to client and was involved in

Estimation, Status Reporting, Metrics Analysis and

Quality Management in her project.

Shubhra has presented a paper in “Quality Management in

Software Testing “at the International Software Testing

Conference organized by QAI in 2007.

Shubhra has presented a paper on “Digital Watermarking

for Information Security in Applications” at Step-Auto

Conference 2008 organized by ISQT.

Shubhra’s paper “Project Client Relationship

Management” has been selected for publication for PML,

2008 organized by QAI.

Shubhra has presented a Tutorial on “User Acceptance

Testing: The Right Way” in SteP-IN 2009.

Shubhra can be contacted at: shubhra.banerji@gmail.com

